

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-19/0816 of 2020/09/01

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

CA POLY - EKOR Injection anchor

Product family to which the above construction product belongs:

Bonded anchor with anchor rod made of galvanized steel or stainless steel of sizes M8, M10 and M12, for use in masonry

Manufacturer:

TORGGLER S.r.I. Via Verande 1/A IT-39012 Merano (BZ) Tel. +39 0473 282400 Internet www.torggler.com TORGGLER S.r.I. Manufacturing plant II

Manufacturing plant:

This European Technical Assessment contains:

22 pages including 17 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: EAD 330076-00-0604, Metal injection anchors for use in masonry

This version replaces:

The ETA with the same number issued on 2019-12-13

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The Injection system CA POLY - EKOR Injection anchor is a bonded anchor (injection type) consisting of a mortar cartridge with CA POLY - EKOR Injection anchor injection mortar, a perforated sleeve, and an anchor rod with hexagon nut and washer in the range of M8, M10 and M12.

The steel elements are made of zinc coated steel or stainless steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry.

An illustration of the product and intended use is given in Annex A1 and Annex A2.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

The anchors are intended to be used with embedment depth given in Annex A3, Table A1. For the installed anchor see Figure given in Annex A2. The intended use specifications of the product are detailed in the Annex B1.

2 Specification of the intended use in accordance with the applicable EAD

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

The anchor is to be used only for anchorages subject to static or quasi-static loading in solid masonry (use category b) or hollow or perforated masonry (use category c) according to Annex B8. The mortar strength class of the masonry must be M 2,5 according to EN 998-2:2010 at minimum.

The anchors may be installed in Category w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.

The anchors may be used in the following temperature range:

- a) -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C),
- b) -40° C to $+50^{\circ}$ C (max. short term temperature $+50^{\circ}$ C and max. long term temperature $+40^{\circ}$ C).

Elements made of galvanized steel or stainless steel may be used in structures subject to dry internal conditions only.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex from C1 to C3.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex from C4.

Hygiene, health and the environment (BWR3):

No performance assessed

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

No performance determined

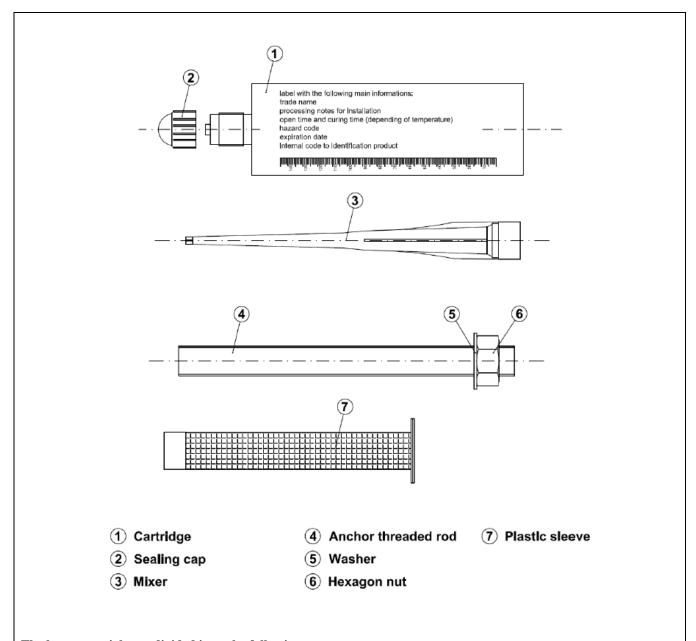
Other Basic Works Requirements are not relevant

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the "European Assessment Document, EAD 330076-00-0604, Metal injection anchors for use in masonry".

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system


According to the decision 1997/177/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.

Issued in Copenhagen on 2020-09-01 by

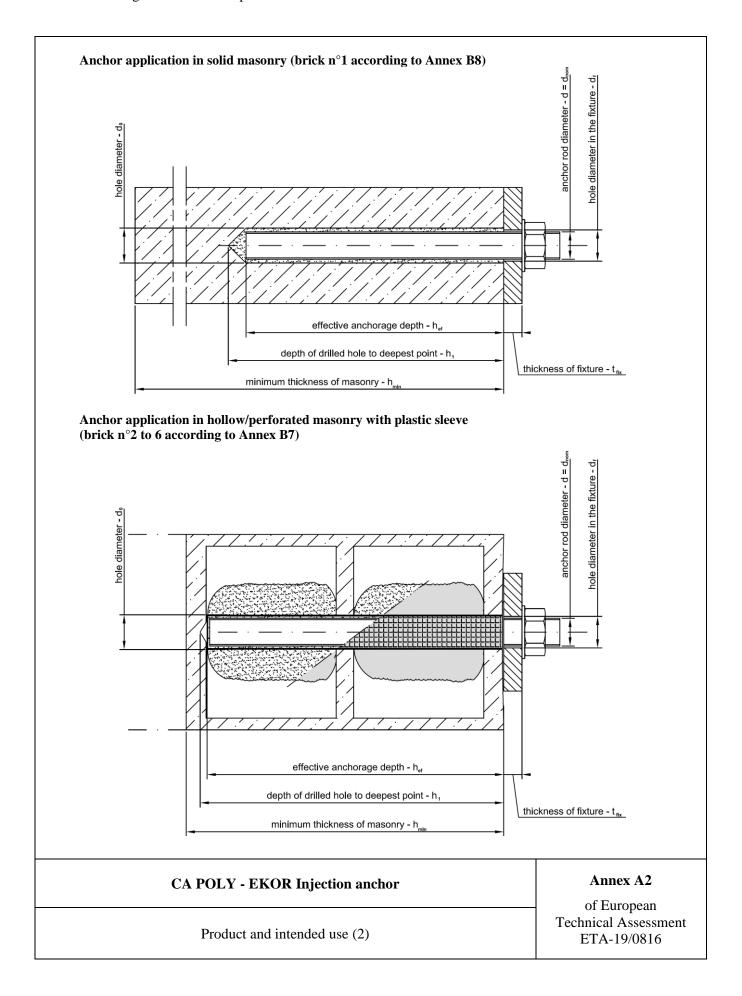
Thomas Bruun Manager, ETA-Danmark

The base materials are divided in to the following groups:

Masonry group b: metal injection anchors for use in solid masonry.

Masonry group c: metal injection anchors for use in hollow or perforated masonry.

Use category in respect of installation and use:


Category w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.

Temperature range:

 -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C)

-40°C to +50°C (max. short term temperature +50°C and max. long term temperature +40°C)

CA POLY - EKOR Injection anchor	Annex A1 of European
Product and intended use (1)	Technical Assessment ETA-19/0816

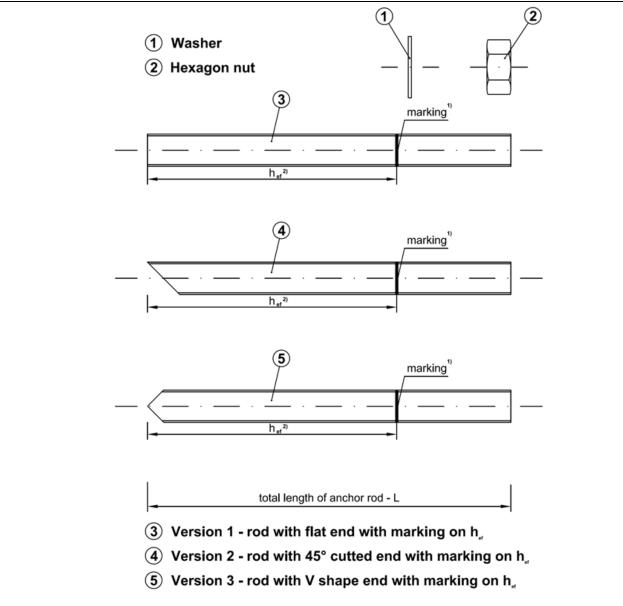


Table A1: Threaded rod dimensions

		h _{ef} [mm]	h _{ef} [mm]
Size	d [mm]	solid masonry	hollow/perforated masonry
M8	8	80	80
M10	10	85	85
M12	12	95	85

- 1) Marking according to EAD 330076-00-0604
- 2) Effective anchorage depths according to the range specified in table 1.

CA POLY - EKOR Injection anchor	Annex A3 of European Technical Assessment ETA-19/0816
Threaded rod types and dimensions	

Table A2: Threaded rods materials

	Designation		
Part	Steel, zinc plated ≥ 5 μm acc. to EN ISO 4042	Stainless steel	
Threaded rod	Steel, property class 5.8 or 6.8, acc. to EN ISO 898-1	Material 1.4401 / 1.4571 acc. to EN 10088; property class 70 (A4-70) acc. to EN ISO 3506	
Hexagon nut	Steel, property class 5 or 6, acc. to EN 20898-2; corresponding to threaded rod material	Material 1.4401 / 1.4571 acc. to EN 10088; property class 70 (A4-70) acc. to EN ISO 3506	
Washer	Steel, acc. to EN ISO 7089; corresponding to threaded rod material	Material 1.4401 / 1.4571 acc. to EN 10088; corresponding to threaded rod material	

Commercial standard threaded rods with:

- material and mechanical properties according to Table 2;
- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004;
- marking of the threaded rod with the embedment depth.

Table A3: Injection mortar

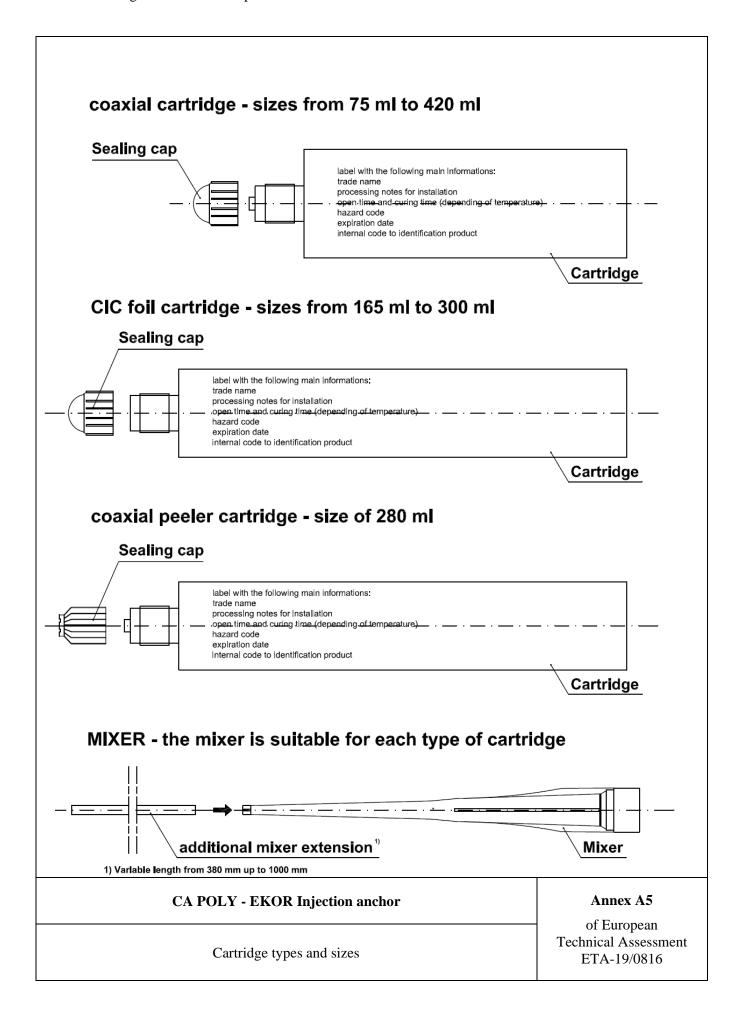
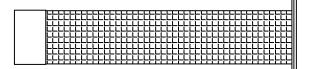
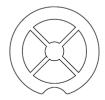

Product	Composition
CA POLY - EKOR Injection anchor two components injection mortar	Additive: quartz Bonding agent: polyester resin styrene free
two components injection mortal	Hardener: dibenzoyl peroxide

Table A4: Minimum curing time³⁾

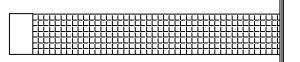

Masonry temperature	Processing time	Minimum curing time ⁵⁾
0°C ⁴⁾	25 min	180 min
5°C ⁴⁾	15 min	120 min
10°C	12 min	90 min
15°C	8 min	60 min
20°C	6 min	45 min
25°C	4 min	30 min
30°C	3 min	20 min

- 3) the minimum time from the end of the mixing to the time when the anchor may be torque or loaded (whichever is longer).
- 4) minimum resin temperature recommended, for injection between 5°C and 0°C, equal to 5°C.
- 5) minimum curing time for dry and wet conditions.

CA POLY - EKOR Injection anchor	Annex A4	
Materials and curing time	of European Technical Assessment ETA-19/0816	

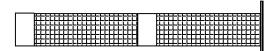


Plastic sleeve for hollow/perforated masonry: nominal dimensions and material



Plastic sleeve 20x85 for M12 Nominal diameter 20 mm Nominal length 85 mm

Lateral and top view of plastic centering cap for 20x85 plastic sleeve



Plastic sleeve 15x85 for M10 Nominal diameter 15 mm Nominal length 85 mm

Lateral and top view of plastic centering cap for 15x85 plastic sleeve

Plastic sleeve 12x80 for M8 Nominal diameter 12 mm Nominal length 80 mm

Lateral and top view of plastic centering cap for 12x80 plastic sleeve

Table A5: Plastic sleeve materials

Part	Designation
Plastic sleeve	Polypropylene (PP) / Polyethylene (PE)
Centering cap	Polypropylene (PP) / Polyethylene (PE)

CA POLY - EKOR Injection anchor	Annex A6 of European
Plastic sleeve	Technical Assessment ETA-19/0816

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

- Static and quasi-static loads: sizes from M8 to M12.

Base materials:

- Solid masonry (masonry group b) or hollow or perforated masonry (masonry group c) according to Annex B7. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum.

Temperature range:

The anchors may be used in the following temperature range:

- a) -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C),
- b) -40° C to $+50^{\circ}$ C (max. short term temperature $+50^{\circ}$ C and max. long term temperature $+40^{\circ}$ C).

Use conditions (Environmental conditions):

Threaded rods:

- a) Carbon galvanized steel class 5.8 or 6.8 according to EN ISO 898-1 for dry internal conditions.
- b) Stainless steel A4-70 and A4-80 according to EN ISO 3506 for dry internal conditions.

Nuts and washers:

Corresponding to anchor rod material above mentioned for the different environmental exposures.

Installation:

- Condition w/d: installation in dry or wet substrate and use in structures subjected to dry, internal conditions.
- Perforation with drilling machine

Proposed design methods:

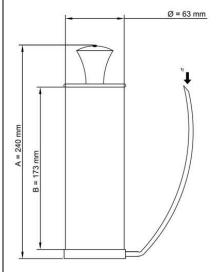
- TR054, Design method A

CA POLY - EKOR Injection anchor	Annex B1
Intended use - Specification	of European Technical Assessment ETA-19/0816

Table B1 Installation data for solid masonry (brick $n^\circ 1)^{\textstyle *}$

Size		M8 M10 M12		M12
Nominal drilling diameter	d ₀ [mm]	10	12	14
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14
Embedment depth	h _{ef} [mm]	80	85	95
Depth of the drilling hole	h ₁ [mm]	h _{ef} + 5 mm		
Torque moment	T _{inst} [Nm]	5	8	10
Thickness to be	t _{fix,min} [mm]	>0		
fixed	t _{fix,max} [mm]	< 1500		
Minimum spacing	S _{min} [mm]	240	255	285
Minimum edge distance	C _{min} [mm]	120	128	143

^{*} Type of bricks are detailed in the Annex B7


Table B2: Installation data for hollow/perforated masonry (brick n° 2 to 6) *

Size		M8	M10	M12
Plastic sleeve		12x80	15x85	20x85
Nominal drilling diameter	d ₀ [mm]	12	16	20
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14
Embedment depth	h _{ef} [mm]	80	85	85
Depth of the drilling hole	h ₁ [mm]	h _{ef} + 5 mm		
Torque moment	T _{inst} [Nm]	3	4	6
Thickness to be	t _{fix,min} [mm]	>0		
fixed	t _{fix,max} [mm]	< 1500		
Minimum spacing	S _{min} [mm]	100	100	120
Minimum edge distance	C _{min} [mm]	100	100	120

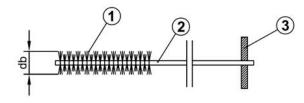
^{*} Type of bricks are detailed in the Annex B7

CA POLY - EKOR Injection anchor	Annex B2
Intended use - data	of European Technical Assessment ETA-19/0816

Manual blower pump: nominal dimensions

It is possible to use the mixer extension with the manual blower pump.

However it is possible to blow the hole using the mechanical air system (compressed air) also with the mixer estension


Suitable min pressure 6 bar at 6 m³/h Oil-free compressed air Recommended air gun with an orifice opening of minimum 3.5 mm in diameter

1) Position to insert the mixer extension

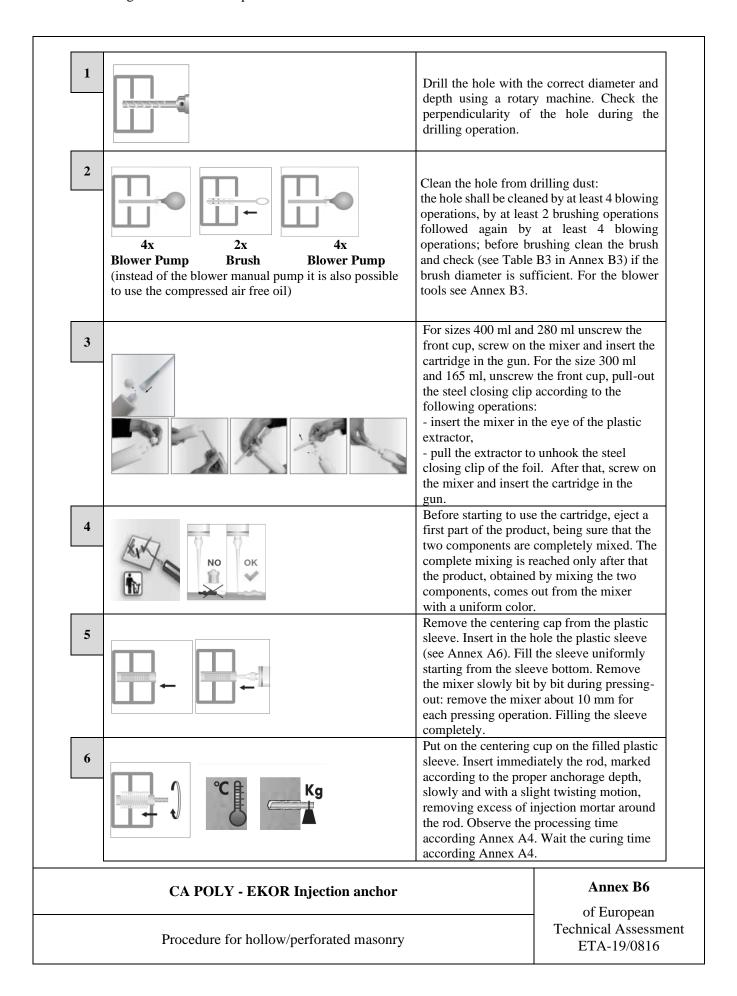
Mixer extension Ø 8 mm

Brush

Brush

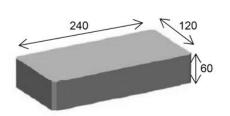
- 1 Steel bristles
- 2 Steel stem
- (3) Wood handle

Table B3: Brush diameter

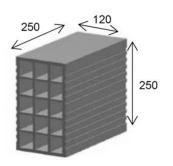

			Use in solid masonry			Use in hol	low/perforat	ed masonry
Type of threaded rod			M8	M10	M12	M8	M10	M12
Type of plastic sleeve		-	-	-	12x80	15x85	20x85	
\mathbf{d}_0	Nominal drill hole	[mm]	10	12	14	12	16	20
dь	Brush diameter	[mm]	12	14	16	12	16	20

CA POLY - EKOR Injection anchor	Annex B3
Cleaning tools	of European Technical Assessment ETA-19/0816

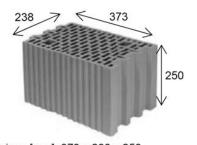
Resin injection pump details				
Pump example	Size cartridge	Туре		
	400 ml	Manual		
	300 ml 280 ml 165 ml	Manual		


CA POLY - EKOR Injection anchor	Annex B4
Tools for injection	of European Technical Assessment ETA-19/0816

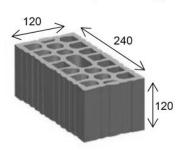
1	depth using a rotar	ne correct diameter and y percussive machine. ularity of the hole during
4x 4x 4x 4x Blower Pump Brush Blower Pump (instead of the blower manual pump it is also possible to use the compressed air free oil)	operations, by at least followed again by operations; before by and check (see Table	drilling dust: ned by at least 4 blowing st 4 brushing operations at least 4 blowing rushing clean the brush B3 in Annex B3) if the efficient. For the blower
3 4	cartridge in the gun. and 165 ml, unscrew the steel closing clip following operations - insert the mixer in extractor, - pull the extractor to closing clip of the fo the mixer and insert gun. Before starting to use first part of the produ	he mixer and insert the For the size 300 ml the front cup, pull-out according to the : the eye of the plastic ounhook the steel il. After that, screw on the cartridge in the e the cartridge, eject a act, being sure that the
5	complete mixing is r the product, obtained components, comes with a uniform color Fill the drilled hole u the drilled hole botto of the air; remove the	uniformly starting from om, to avoid entrapment e mixer slowly bit by out; filling the drill hole
6 C Kg	Insert immediately the according to the proposlowly and with a sli removing excess of ithe rod. Observe the	per anchorage depth, ght twisting motion, njection mortar around processing time . Wait the curing time
CA POLY - EKOR Injection anchor		Annex B5
Procedure for solid masonry		of European Technical Assessment ETA-19/0816


Table B5: Type of solid and hollow/perforated masonry

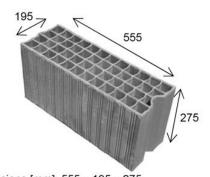
Brick n°1 – Solid according to EN 771-1 - HD (High density)


Dimensions [mm]: 120 x 240 x 60 f_b class \geq 73 N/mm² density ρ m \geq 1700 kg/m³ (e.g. type "Mattone Pieno")

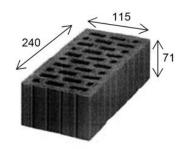
Brick n°3 – Hollow/perforated according to EN 771-1 - LD (Low density)


Dimensions [mm]: 120 x 250 x 250 f_b class \geq 5,3 N/mm² density ρ m \geq 550 kg/m³ (e.g. type "Forato")

Brick n°5 – Hollow/perforated according to EN 771-1 - LD (Low density)


Dimensions [mm]: $373 \times 238 \times 250$ f_b class $\geq 15 \text{ N/mm}^2$ density $\rho m \geq 800 \text{ kg/m}^3$ (e.g. type "Porotherm 25 P+W")

Brick n°2 – Hollow/perforated according to EN 771-1 - LD (Low density)


Dimensions [mm]: 240 x 120 x 120 f_b class \geq 18,3 N/mm² density $\rho m \geq$ 810 kg/m³ (e.g. type "Mattone Doppio UNI")

Brick n°4 – Hollow/perforated according to EN 771-1 - LD (Low density)

Dimensions [mm]: $555 \times 195 \times 275$ f_b class $\geq 4,0 \text{ N/mm}^2$ density $\rho \text{m} \geq 600 \text{ kg/m}^3$ (e.g. type "Brique creuse RC 40")

Brick n°6 – Hollow/perforated according to EN 771-1 - LD (Low density)

Dimensions [mm]: 115 x 240 x 71 f_b class \geq 12 N/mm² density ρ m \geq 900 kg/m³ (e.g. type "HIz B - 1.0 1NF 12-1")

CA POLY - EKOR Injection anchor

Type and dimensions of brick

Annex B7

of European Technical Assessment ETA-19/0816

Table C1: Essential Characteristics

ESSENTIAL CHA	ARACTERISTICS	PERFORMANCE		
Installation paran	neters	M8	M10	M12
d [mm]		8	10	12
d ₀ [mm] category b	(solid masonry)	10	12	14
	(hollow or perforated masonry)	12	16	20
Type of plastic slee	eve for use in category c	GC 12x80	GC 15x85	GC 20x85
d _{fix} [mm]		9	12	14
h ₁ [mm]			$h_{ef} + 5 \text{ mm}$	
4 []	Min		> 0	
t _{fix} [mm]	Max		≤ 1500 mm	
T _{inst} [Nm] category	b (solid masonry)	5	8	10
T _{inst} [Nm] category masonry)	c (hollow or perforated	3	4	6
S _{min} [mm] category	b (solid masonry)	240	255	285
	b (solid masonry)	120	128	143
S _{min} e C _{min} [mm] category c (hollow or perforated masonry)		100	100	120
* Resistance for tensile and shear load Temperature range -40°C/+40°C (T_{mlp} = 24°C) and -40°C/+50°C (T_{mlp} = 40°C)		M8	M10	M12
	N _{Rk} [kN]	1,50	2,50	3,00
Brick n°1	V _{Rk} [kN]	1,50	2,50	3,00
D:1 02	N _{Rk} [kN]	3,50	4,00	5,00
Brick n°2	V _{Rk} [kN]	3,50	4,00	5,00
Brick n°3	N _{Rk} [kN]	0,60	1,50	1,50
Brick ii 3	V _{Rk} [kN]	0,60	1,50	1,50
Dai als nº4	N _{Rk} [kN]	0,90	0,90	0,60
Brick n°4	V _{Rk} [kN]	0,90	0,90	0,60
Brick n°5	N _{Rk} [kN]	2,00	2,00	2,50
DIICK II 3	V _{Rk} [kN]	2,00	2,00	2,50
Dai als nº6	N _{Rk} [kN]	3,00	4,00	4,00
Brick n°6	V _{Rk} [kN]	3,00	4,00	4,00

Table C2: Characteristic bending moments

ESSENTIAL CHARACTERISTICS	PERFORMANO	CE			
Size			M8	M10	M12
Characteristic resistance with standard threaded rod grade 5.8	$M_{Rk,s}$	[Nm]	19	37	65
Partial safety factor	γ_{Ms}	[-]		1,25	
Characteristic resistance with standard threaded rod grade 6.8	$M_{Rk,s}$	[Nm]	22	45	79
Partial safety factor	γ_{Ms}	[-]		1,25	
Characteristic resistance with standard threaded rod stainless steel A4-70 (class 70)	$M_{Rk,s}$	[Nm]	26	52	92
Partial safety factor	γ _{Ms}	[-]		1,56	

CA POLY - EKOR Injection anchor	Annex C1 of European	
Performance for static and quasi-static loads: Resistances	Technical Assessment ETA-19/0816	

^{*} For design according to EOTA TR054: $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,pb} -$ steel failure is not decisive * For design according to EOTA TR054: $V_{Rk} = V_{Rk,b} -$ steel failure without lever arm is not decisive $-V_{Rk,c}$ according to EOTA TR054

Table C3.	Characteristic values	for toncion	and chear load
Table Ca: (Unaracteristic vailles	tor tension	and snear load.

ESSENTIAL CHARACTE			PERFORMANCE		1
* Resistance for tensile and Temperature range -40°C/+ -40°C/+50°C ($T_{mlp} = 40$ °C)			M8	M10	M12
γ _{Mm} [-] Condition w/d				2,50	
Brick n°1	S _{cr,N} [mm	.]	240	255	285
Brick n°1	C _{cr,N} [mr	1]	120	128	143
Brick n°2	S _{cr,N} [mm	.]	240	240	240
DIICK II 2	C _{cr,N} [mm		120	120	120
Brick n°3	S _{cr,N} [mm		250	250	250
Blick if 3	C _{cr,N} [mn		125	125	125
Brick n°4	S _{cr,N} [mm		555	555	555
	C _{cr,N} [mr		278	278	278
Brick n°5	S _{cr,N} [mm		373	373	373
	C _{cr,N} [mr		187 240	187 240	187 240
Brick n°6	S _{cr,N} [mm		120	120	120
β coefficient for in situ test	$\frac{C_{cr,N}[mn]}{(FAD 33)}$				
Temperature range: -40°C/			M8	M10	M12
Brick n° 1, 2, 3, 4, 6	140 00	β[-]		0,70	ı
Brick n° 5		β[-]	0,65	0,70	0,70
Displacement under service	load	, FLJ	*,***	2,1.2	
Tensile load					
Brick n°1 – Solid brick			M8	M10	M12
Admissible service load in te	nsile l	F [kN]	0,65	1,03	1,15
Displacement		S _{N0} [mm]	0,08	0,07	0,06
		S _{N∞} [mm]	0,16	0,16	0,16
D:1 02 H 11 / 6			M8	M10	M12
Brick n°2 – Hollow/perfora	ted brick		GC 12x80	GC 15x85	GC 20x85
Admissible service load in te	nsile I	F [kN]	1,48	1,81	2,09
	6	S _{N0} [mm]	0,06	0,08	0,10
Displacement	-	S _{N∞} [mm]	0,16	0,16	0,20
		ov∞ [IIIII]	M8	M10	M12
$Brick\ n^{\circ}3-Hollow/perfora$	ted brick		GC 12x80	GC 15x85	GC 20x85
Admissible service load in te	nsile I	F [kN]	0,29	0,73	0,80
Admissible service load in te		$S_{N0}[mm]$	0,06	0,08	0,07
Displacement		δ _{N∞} [mm]			· · · · · · · · · · · · · · · · · · ·
	(N∞ [IIIII]	0,16	0,16	0,16
Brick n°4 – Hollow/perfora	ted brick		M8	M10	M12
	'1 1	20.00	GC 12x80	GC 15x85	GC 20x85
Admissible service load in te		F [kN]	0,39	0,44	0,26
Displacement		S _{N0} [mm]	0,06	0,06	0,06
*	ð	S _{N∞} [mm]	0,16	0,16	0,16
Brick n°5 – Hollow/perfora	ted brick		M8	M10	M12
			GC 12x80	GC 15x85	GC 20x85
A 1		F [kN]	0,92	0,91	1,02
Admissible service load in te		$\delta_{ m N0}[{ m mm}]$	0,06	0,06 0,16	0,06
		2 г 1		1 0.16	0,16
		S _{N∞} [mm]	0,16		7.710
Admissible service load in te Displacement Brick n°6 – Hollow/perfora	(M8	M10	M12 GC 20x85
Displacement Brick n°6 – Hollow/perfora	ted brick		M8 GC 12x80	M10 GC 15x85	GC 20x85
Displacement	ted brick	F [kN]	M8 GC 12x80 1,19	M10 GC 15x85 1,69	GC 20x85 1,78
Displacement Brick n°6 – Hollow/perfora	ted brick		M8 GC 12x80	M10 GC 15x85	GC 20x85

CA POLY - EKOR Injection anchor	Annex C2 of European		
Performance for static and quasi-static loads: Resistances	Technical Assessment ETA-19/0816		

Table C3 cont.: Characteristic values for tension and shear load.

ESSENTIAL CHARACTERISTICS		PERFORMANCE		
Displacement under service load				
Shear load Brick n°1 – Solid brick		M8	M10	M12
Admissible service load in shear	F [kN]	1.32	2,94	2.62
Displacement	$\delta_{V_0}[mm]$	0,23	0,48	0,38
	δ _{V∞} [mm]	0,34	0,72	0,57
Brick n°2 – Hollow/perforated brick		M8 GC 12x80	M10 GC 15x85	M12 GC 20x85
Admissible service load in shear	F [kN]	1,72	2,03	2,93
D' 1	δ_{V0} [mm]	0,20	0,38	0,34
Displacement	δ _{V∞} [mm]	0,30	0,57	0,51
Brick n°3 – Hollow/perforated brick		M8 GC 12x80	M10 GC 15x85	M12 GC 20x85
Admissible service load in shear	F [kN]	0,93	1,08	0,86
D: 1	δ_{V0} [mm]	0,31	0,23	0,18
Displacement	$\delta_{V\infty}\left[mm\right]$	0,46	0,34	0,27
Brick n°4 – Hollow/perforated brick		M8 GC 12x80	M10 GC 15x85	M12 GC 20x85
Admissible service load in shear	F [kN]	0,44	0,63	0,44
Displacement	$\delta v_0 [mm]$	0,10	0,18	0,27
Displacement	δ _{V∞} [mm]	0,15	0,27	0,40
Brick n°5 – Hollow/perforated brick		M8 GC 12x80	M10 GC 15x85	M12 GC 20x85
Admissible service load in shear	F [kN]	0,78	1,06	1,00
Displacement	δ_{V0} [mm]	0,23	0,19	0,31
Displacement	$\delta_{V\infty} [mm]$	0,34	0,28	0,46
Brick $n^{\circ}6$ – Hollow/perforated brick		M8 GC 12x80	M10 GC 15x85	M12 GC 20x85
Admissible service load in shear	F [kN]	1,25	2,23	1,65
Displacement	δ _{V0} [mm]	0,17	0,69	0,13
Displacement	δ _{V∞} [mm]	0,25	1,03	0,19

Table C4: Reaction to fire.

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Reaction to fire	In the final application the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore, it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not make any contribution to fire growth or to the fully developed fire and they have no influence on the smoke hazard.

Table C5: Resistance to fire.

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Resistance to fire	NPA

CA POLY - EKOR Injection anchor	Annex C3 of European
Performance for static and quasi-static loads: Resistances	Technical Assessment ETA-19/0816

Table C6: Terminology and symbols

1	
d	Diameter of anchor bolt or thread diameter
<u>d</u> ₀	Drill hole diameter Diameter of clearance hole in the fixture
d _{fix}	Effective anchorage depth
h _{ef}	
	Depth of the drilling hole Minimum thickness of concrete member
h _{min}	Torque moment to installation
T _{inst}	Thickness to be fixed
S _{min}	Minimum allowable spacing
C _{min}	Minimum allowable edge distance
k _{urc,N} [-]	Factor for concrete cone in uncracked concrete
S _{cr,N} [-]	Characteristic spacing between two different anchors for the concrete cone failure
C _{cr,N}	Characteristic edge distance between two different anchors for the concrete cone failure
S _{cr,sp}	Spacing for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge effects in
Scr,sp	case of splitting failure
C _{cr,sp}	Edge distance for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge
	effects in case of splitting failure
$N_{Rk,s}$	Characteristic tension resistance for steel failure
$N_{Rk,c}$	Characteristic tension resistance for concrete cone failure
$V_{Rk,s}$	Characteristic shear resistance for steel failure without lever arm
k ₇	Ductility factor for steel failure in shear load
${\sf M^0}_{{\sf Rk},{\sf s}}$	Characteristic shear resistance for steel failure with lever arm
$V_{Rk,c}$	Characteristic shear resistance for concrete edge failure
d _{nom} [mm]	Outside diameter of fastener
l _f [mm]	Parameter for evaluation of concrete edge failure
$\tau_{Rk,ucr}$	Characteristic bond resistance in un-cracked concrete class C20/25
$\gamma_2 = \gamma_{inst}$	Partial safety factors for installation
Ψ _{c,ucr}	Increasing factor for un-cracked concrete
$k = k_3 = k_8$ [-]	Factor for concrete pry-out failure
F	Service load in un-cracked (ucr) or cracked concrete (cr) in tensile or shear load
δ_0	Short term displacement under service load in un-cracked (uncr) or cracked concrete (cr) for tensile (N) or shear load (V)
δ_{∞}	Long term displacement under service load in un-cracked (uncr) or cracked concrete (cr) for tensile (N) or shear load (V)
NPA	No performance assessed

CA POLY - EKOR Injection anchor	Annex C4 of European
Terminology and symbols	Technical Assessment ETA-19/0816