

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-19/0817 of 2020/09/01

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

CA VINYL - EKOR Anchor System

Product family to which the above construction product belongs:

Bonded anchor with anchor rod and rebar for use in

non-cracked concrete. Sizes: M8-M10-M12-M16

Sizes: Ø8-Ø10-Ø12-Ø14-Ø16

Manufacturer:

TORGGLER S.r.l. Via Verande 1/A

IT-39012 Merano (BZ) Tel. +39 0473 282400 Internet www.torggler.com

Manufacturing plant:

TORGGLER S.r.I. Manufacturing plant II

This European Technical Assessment contains:

20 pages including 15 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

EAD 330499-00-0601, "Bonded fasteners for use in concrete"

The ETA with the same number issued on 2019-12-13

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The CA VINYL - EKOR is a bonded anchor (injection type) consisting of an injection mortar cartridge equipped with a special mixing nozzle and a steel element:

- threaded anchor rod;
- deformed reinforcing bar (rebar).

Threaded rod sizes from M8 to M16 made of:

- galvanized carbon steel,
- stainless steel A4-70, A4-80 or high corrosion resistant stainless steel with hexagon nut and washer.

Rebar sizes from Ø8 to Ø16 mm according to EN 1992-1-1:2004 and AC:2010, Annex C.

The steel element is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The steel element is anchored by the bond between the metal part, mortar and concrete.

The product description corresponds to the drawings given in the Annex A1 to A4.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

The anchors are intended to be used with embedment depth given in Annex A2, Table A1. For the installed anchor see Figure given in Annex A1. The intended use specifications of the product are detailed in the Annex B1.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B1 to B6.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex from C1 to C4.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex C4

Hygiene, health and the environment (BWR3):

No performance assessed

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BR1).

Sustainable use of natural resources (BWR7)

No performance determined

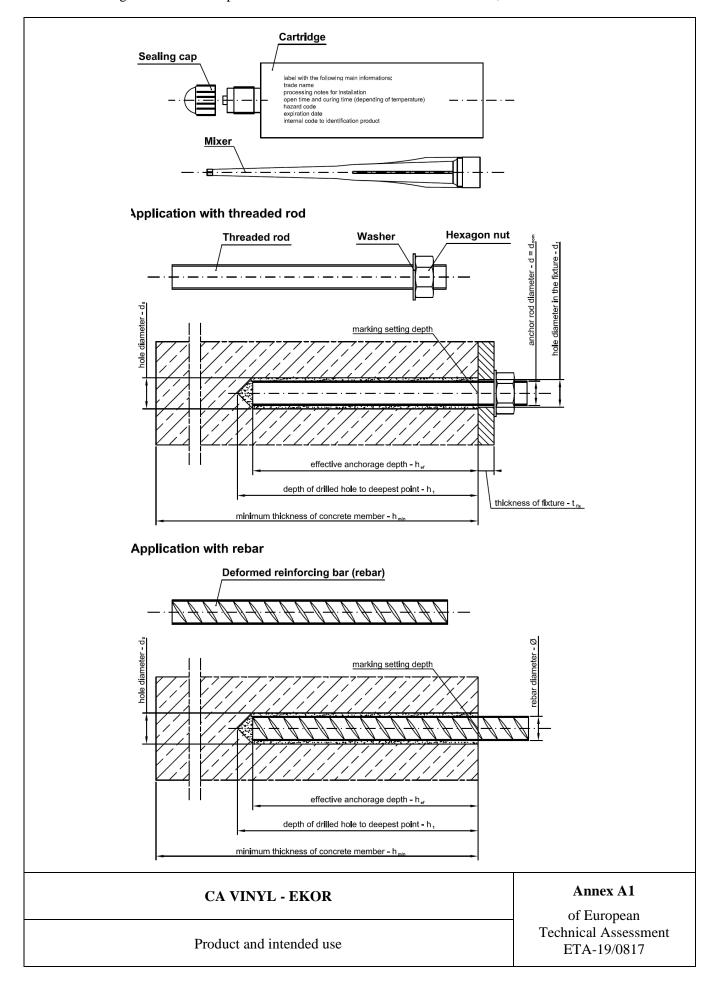
Other Basic Requirements are not relevant.

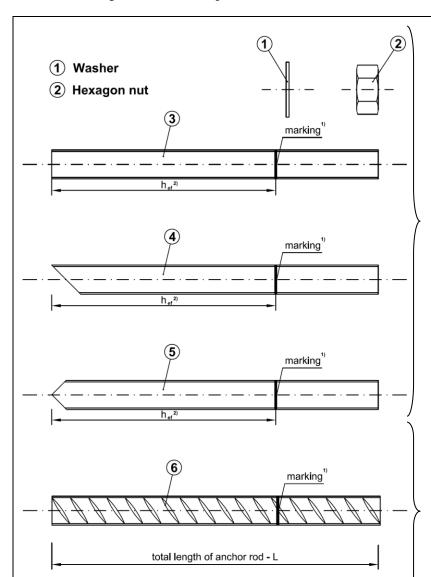
3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with EAD 330499-00-0601, "Bonded fasteners for use in concrete".

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system


According to the decision 96/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.


5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

Issued in Copenhagen on 2020-09-01 by

Thomas Bruun Managing Director, ETA-Danmark

Table A1: Threaded rod dimensions

Size	d [mm]	h _{ef,min} [mm]	h _{ef,max} [mm]
M8	8	60	160
M10	10	70	200
M12	12	80	240
M16	16	100	320

Table A2: Rebar dimensions

Size	Ø [mm]	h _{ef,min} [mm]	h _{ef,max} [mm]
Ø8	8	60	160
Ø10	10	70	200
Ø12	12	80	240
Ø14	14	80	280
Ø16	16	100	320

- 3 Version 1 rod with flat end with marking on h
- (4) Version 2 rod with 45° cutted end with marking on h_e
- 5 Version 3 rod with V shape end with marking on h,
- 6 Rebar Deformed reinforcing bar with marking on h,
- ¹⁾ Marking according to clause 2.1.2. of EAD 330499-00-0601
- ²⁾ Effective anchorage depths according to the range specified in Table A1 and A2

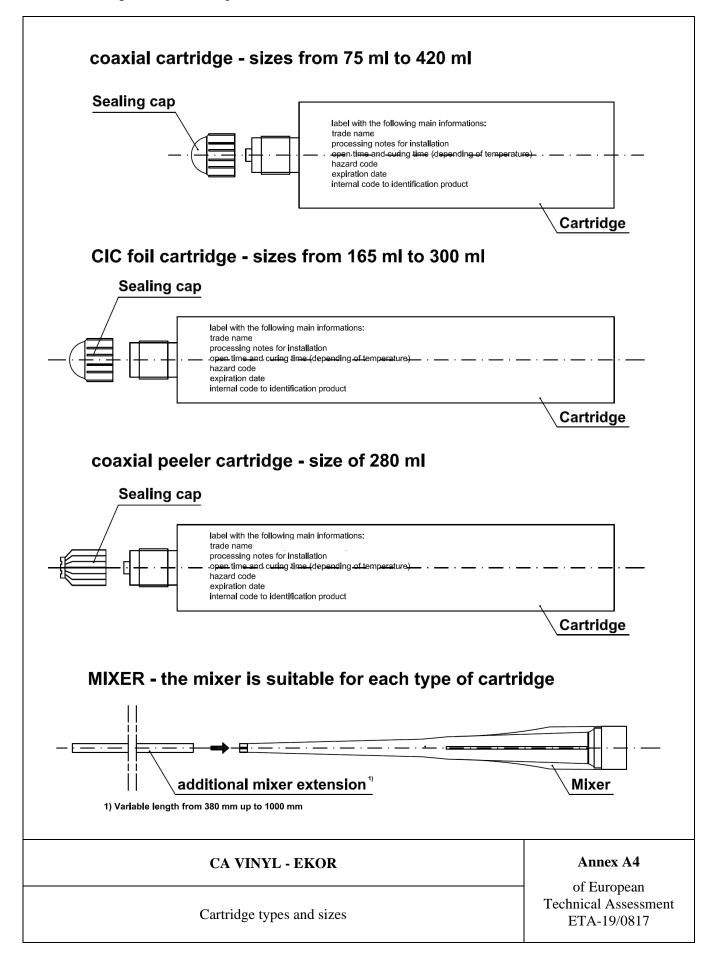
CA VINYL - EKOR	Annex A2 of European	
Steel element: types and dimensions	Technical Assessment ETA-19/0817	

Table A3: Threaded rod materials

	Designation					
Part	Steel: zinc plated ≥ 5 µm acc. to EN ISO 4042 hot dipped galvanized ≥ 45 µm EN ISO 10684	Stainless steel A4	High corrosion resistance stainless steel (HCR)			
Threaded rod	Steel property class from 4.8 to 8.8, acc. to EN ISO 898-1	Material 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 acc. to EN 10088-1; property class 50, 70 or 80 acc. to EN ISO 3506-1	Material 1.4529 / 1.4565, acc. to EN 10088-1; property class 50, 70 or 80 acc. to EN ISO 3506-1			
Washer EN ISO 7089	Steel acc. to corresponding to threaded rod material	Material 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 acc. to EN 10088-1; corresponding to threaded rod material	Material 1.4529 / 1.4565, acc. to EN 10088-1; corresponding to threaded rod material			
Hexagon nut	Steel, property class from 4 to 8 acc. to EN 898-2; corresponding to threaded rod material	Material 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 acc. to EN 10088-1; property class 50, 70 or 80 acc. to EN ISO 3506-1	Material 1.4529 / 1.4565, acc. to EN 10088-1; property class 50, 70 or 80 acc. to EN ISO 3506-1			

Table A4: Rebar materials

Designation					
Reinforced deforming bars class B or C according to EN 1992-1-1:2004 and AC:2010, Annex C					
Product form			Bars and de	-coiled rods	
Class			В	C	
Characteristic yield strength f _{yk} or f _{0,2k} [N/mm ²]			400 to	o 600	
Minimum value of $k = (f_t / f_y)_k$			≥ 1,08	≥ 1,15	
				< 1,35	
Characteristic strain at minimum force, ϵ_{uk} [%]			≥ 5,0	≥ 7,5	
Bend ability			Bend / Re	ebend test	
Maximum deviation from nominal mass (individual bar), [%] Nominal bar > 8			± 6.0		
size [mm] ≤ 8		± 4.5			
Bond: Minimum relative rib area, f _{R,min}	Nominal bar 8 to 12		0,040		
size [mm] > 12		0,056			
Rib height h: The rib height h should be: $0.05 \cdot \emptyset \le h \le 0.07 \cdot \emptyset$ (\emptyset = nominal bar diameter)					


Commercial standard steel element with:

- material and mechanical properties according to Table A2 and A3,
- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004, marking of the threaded rod with the embedment depth.

Table A5: Injection mortar

Product	Composition	
CA VINYL - EKOR	M. d. d. C. J. J. CII	
two components injection mortar)	Mortar resin styrene-free, hardener, filler	

CA VINYL - EKOR	Annex A3
Materials	of European Technical Assessment ETA-19/0817

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

- Static and quasi-static loads: sizes from M8 to M16 for threaded rod.
- Static and quasi-static loads: sizes from Ø8 to Ø16 for rebar.

Base materials:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206-1.
- Non cracked concrete.

Temperature range:

The anchors may be used in the following temperature range:

- a) -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C).
- b) -40° C to $+50^{\circ}$ C (max. short term temperature $+50^{\circ}$ C and max. long term temperature $+40^{\circ}$ C).

Use conditions (Environmental conditions):

- Elements made of galvanized steel may be used in structures subject to dry internal conditions only.
- Elements made of stainless steel may be used in structures subject to dry internal conditions and also in concrete subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).
- Elements made of high corrosion resistant steel may be used in structures subject to dry internal conditions and also in concrete subject to external atmospheric exposure or exposure in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Installation:

The anchors may be installed in:

- Dry or wet concrete (use category 1): sizes from M8 to M16 and Ø8 to Ø16.
- All the diameters may be used overhead: sizes from M8 to M16 and Ø8 to Ø16.
- The anchor is suitable for hammer drilled holes: sizes from M8 to M16 and Ø8 to Ø16.

Proposed design methods:

- Static and quasi-static load: EN 1992-4 or Technical Report TR055.

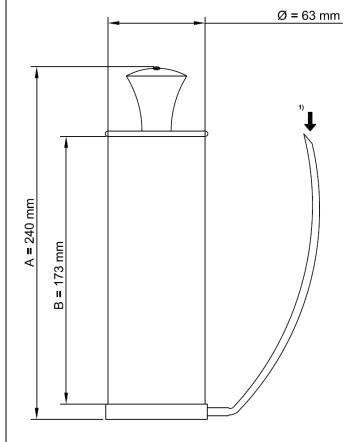
CA VINYL - EKOR	Annex B1
Intended use - Specification	of European Technical Assessment ETA-19/0817

Table B1: Installation data for threaded rod

Size		M8	M10	M12	M16	
Nominal drilling diameter	d ₀ [mm]	10	12	14	18	
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14	18	
Embodocat doub	h _{ef,min} [mm]	60	70	80	100	
Embedment depth	h _{ef,max} [mm]	160	200	240	320	
Depth of the drilling hole	h ₁ [mm]	$h_{\rm ef} + 5 \ mm$				
Minimum thickness of the slab	h _{min} [mm]] $h_{ef} + 30 \text{ mm}; \ge 100 \text{ mm}$		$h_{ef}+2d_0 \\$		
Torque moment	T _{inst} [Nm]	10	20	40	80	
Thickness to be fixed	t _{fix,min} [mm]	> 0				
Thickness to be fixed	t _{fix,max} [mm]	< 1500				
Minimum spacing	S _{min} [mm]	40	40	40	50	
Minimum edge distance	C _{min} [mm]	40	40	40	50	

Table B2: Installation data for rebar

Size		Ø8	Ø10	Ø12	Ø14	Ø16
Nominal drilling diameter	d ₀ [mm]	12	14	16	18	20
Embedment depth	$h_{ef,min}$ [mm]	60	70	80	80	100
	h _{ef,max} [mm]	160	200	240	280	320
Depth of the drilling hole	h ₁ [mm]			$h_{ef} + 5 \text{ mm}$	l	
Minimum thickness of the slab	h _{min} [mm]	-	nm; ≥ 100 m		$h_{ef} + 2d_0$	
Minimum spacing	S _{min} [mm]	40	40	40	40	50
Minimum edge distance	C _{min} [mm]	40	40	40	40	50


Table B3: Minimum curing time 1)

Concrete temperature	Processing time	Minimum curing time ³⁾
0°C ²⁾	25 min	180 min
5°C ²⁾	15 min	120 min
10°C	12 min	90 min
15°C	8 min	60 min
20°C	6 min	45 min
25°C	4 min	30 min
30°C	3 min	20 min

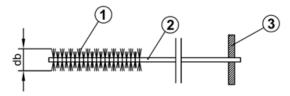
- the minimum time from the end of the mixing to the time when the anchor may be torque or loaded (whichever is longer). minimum resin temperature recommended, for injection between 5° C and 0° C, equal to 10° C.
- 2)
- minimum curing time for dry and wet conditions.

CA VINYL - EKOR	Annex B2		
Intended use – Installation data	of European Technical Assessment ETA-19/0817		

Manual blower pump: nominal dimensions

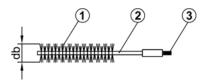
It is possible to use the mixer extension with the manual blower pump.

However it is possible to blow the hole using the mechanical air system (compressed air) also with the mixer estension


Suitable min pressure 6 bar at 6 m³/h Oil-free compressed air Recommended air gun with an orifice opening of minimum 3.5 mm in diameter

1) Position to Insert the mixer extension

Mixer extension (from 380 mm to 1000 mm) with nominal diameter equal to 8 mm


CA VINYL - EKOR	Annex B3
Cleaning tools (1)	of European Technical Assessment ETA-19/0817

Standard brush

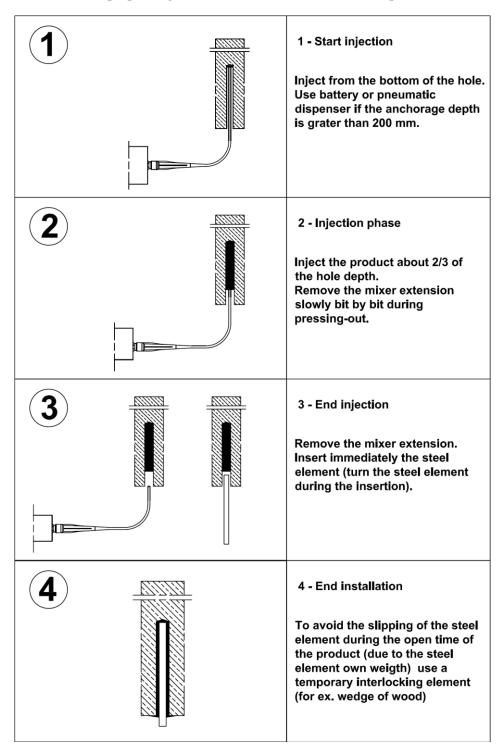
- 1 Steel bristles
- 2 Steel stem
- (3) Wood handle

Special brush

- 1 Steel bristles
- 2 Steel stem
- 3 Threaded connection for drilling tool extension
- 4 Extension special brush
- 5 Drilling tool connection (SDS connection)

Table B4: Brush diameter for threaded rod

Threaded	rod diameter - d		M8	M10	M12	M16
\mathbf{d}_0	Nominal drill hole	[mm]	10	12	14	18
dь	Brush diameter	[mm]	12	14	16	20


Table B5: Brush diameter for rebar

Rebar dia	meter - Ø		Ø8	Ø10	Ø12	Ø14	Ø16
\mathbf{d}_0	Nominal drill hole	[mm]	12	14	16	18	20
$\mathbf{d}_{\mathbf{b}}$	Brush diameter	[mm]	14	16	18	20	22

CA VINYL - EKOR	Annex B4
Cleaning tools (2)	of European Technical Assessment ETA-19/0817

	using a rotary percuss	correct diameter and depth sive machine. Check the e hole during the drilling
4 x Blower 4 x Brush 4 x Blower if necessary use a mixer extension for the blower operation (see Annex B3). In case of use of compressed air each blower operation must be done for 5 second. Use compressed air free oil.	operations, by at least followed again by at least before brushing clean	ted by at least 4 blowing set 4 brushing operations east 4 blowing operations; the brush and check (see diameter is sufficient. For
3	cup, screw on the mixer the gun. For the size 30 the front cup, pull-ou according to the following insert the mixer in the control of pull the extractor to un of the foil. In the version	eye of the plastic extractor, shook the steel closing clip in without extractor cut the ew on the mixer and insert
4 NO OK	Before starting to use the part of the product, being components are completed completed mixing is read product, obtained by m	he cartridge, eject a first ng sure that the two etely mixed. The ched only after that the
if necessary use a mixer extension for the injection (see Annex A4)	Fill the drilled hole uni drilled hole bottom, in of the air; remove the n during pressing-out; fil	ling the drill hole with a n mortar corresponding to
ATTENTION: Use the rods dry and free oil and other contaminants	and with a slight twisting excess of injection mor	ranchorage depth, slowly ng motion, removing tar around the steel rocessing time according
CA VINYL - EKOR		Annex B5
Procedure of installation		of European Technical Assessmer ETA-19/0817

For overhead installation follow the standard procedure detailed in Annex B5 up to point 4. Put the mixer extension (cut the proper length) on the mixer and follow the below procedure:

Observe the open time and wait the curing time according to Annex B2.

CA VINYL - EKOR	Annex B6
Overhead application	of European Technical Assessment ETA-19/0817

Table C1: Characteristic values for tension and shear load in non cracked concrete for threaded rod

ESSENTIAL CHAI	ACTEDISTICS	PERFORMANCE						
			1	3.612	Mic			
Installation parame	ters	M8	M10	M12	M16			
d [mm]		8	10 12	12	16			
d_0 [mm] d_{fix} [mm]		9	12	14 14	18			
n ₁ [mm]		7	h _{ef} + 5 mm					
h _{min} [mm]		ŀ	$h_{\rm ef} + 30 \text{mm}$ $h_{\rm ef} + 30 \text{mm}$ $h_{\rm ef} + 2d_0$					
T _{inst} [Nm]		10	20	40	80			
	Min		>	0				
t _{fix} [mm]	Max	≤ 1500 mm						
S _{min} [mm]	•	40	40	40	50			
C _{min} [mm]		40	40	40	50			
$\gamma_2 = \gamma_{inst}$ [-] Category	1 – for tensile and shear load		1,	00	1			
Characteristic resis	ance for tension load	М8	M10	M12	M16			
Steel failure 1)								
N _{Rk,s} [kN]		Characteristic resi	stance according to th	e design method spo	ecified in Annex B			
Concrete cone failu	re							
N _{Rk,c} [kN]		Characteristic resi	stance according to th	e design method spo	ecified in Annex B			
Combined pullout a	nd concrete cone failure							
t _{Rk,ucr} [N/mm ²] concr Femperature range	ete C20/25 40°C/+40°C (T _{mlp} = +24°C)	13	13	11	9,5			
$\tau_{\rm Rk,ucr}$ [N/mm²] concrete C20/25 Temperature range -40°C/+50°C ($T_{\rm mlp}$ = +40°C)								
		12	12	11	9,0			
Temperature range -4		12	12		9,0			
Temperature range -4 Ψ _{c,ucr} C30/37 [-]		12)4	9,0			
Temperature range -4 ψ _{c,ucr} C30/37 [-] ψ _{c,ucr} C40/50 [-]		12	1,)4)7	9,0			
Temperature range -4 Ψ _{c,ucr} C30/37 [-] Ψ _{c,ucr} C40/50 [-] Ψ _{c,ucr} C50/60 [-]		12	1, 1,)4)7	9,0			
		12 Scr.sp = 4 hef	1, 1,)4)7	9,0			
Temperature range -4 Ψ _{c,ucr} C30/37 [-] Ψ _{c,ucr} C40/50 [-] Ψ _{c,ucr} C50/60 [-]	$40^{\circ}\text{C}/+50^{\circ}\text{C} \text{ (T}_{\text{mlp}} = +40^{\circ}\text{C)}$		1, 1, 1,)4)7	9,0			
Temperature range -4 Ψc,ucr C30/37 [-] Ψc,ucr C40/50 [-] Ψc,ucr C50/60 [-] Splitting failure	$\begin{array}{c} 40^{\circ}\text{C}/+50^{\circ}\text{C (}T_{mlp}=+40^{\circ}\text{C)} \\ \\ \text{for } h=h_{min} \end{array}$	$S_{cr,sp} = 4 h_{ef}$ $S_{cr,sp} = interpolated$	1, 1, 1,	04 07 09	9,0			
Temperature range -4 Ψ _{c,ucr} C30/37 [-] Ψ _{c,ucr} C40/50 [-] Ψ _{c,ucr} C50/60 [-] Splitting failure	$\begin{array}{c} \text{for } h = h_{min} \\ \\ \text{if } h_{min} \leq h \leq 2 \ h_{ef} \end{array}$	$S_{cr,sp} = 4 h_{ef}$ $S_{cr,sp} = interpolated$	1, 1, 1, 1,	04 07 09 09	9,0			
Temperature range -4 \(\psi_{\text{c,ucr}} \cdot C30/37 \cdot [-] \) \(\psi_{\text{c,ucr}} \cdot C40/50 \cdot [-] \) \(\psi_{\text{c,ucr}} \cdot C50/60 \cdot [-] \) Splitting failure $S_{cr,sp} [mm]$	$\begin{array}{c} \text{for } h = h_{min} \\ \\ \text{if } h_{min} \leq h < 2 \ h_{ef} \\ \\ \text{if } h \geq 2 \ h_{ef} \end{array}$	$S_{cr,sp} = 4 h_{ef}$ $S_{cr,sp} = interpolated$	$\begin{array}{c} 1, \\ 1, \\ 1, \\ 1, \\ \end{array}$ value $(\tau_{Rk,ucr}/7, 5)^{A0.5} \leq 3 \text{ here}$	04 07 09 09	9,0 M16			
Temperature range -4 We,uer C30/37 [-] We,uer C40/50 [-] We,uer C50/60 [-] Splitting failure Ser,sp [mm] Cer,sp [mm] Resistance for shear	$\begin{array}{c} \text{for } h = h_{min} \\ \\ \text{if } h_{min} \leq h < 2 \ h_{ef} \\ \\ \text{load} \end{array}$	$S_{cr,sp} = 4 \text{ hef}$ $S_{cr,sp} = \text{interpolated}$ $S_{cr,sp} = S_{cr,Np} = 20 \text{ d}$	value $(\tau_{Rk,ucr}/7,5)^{\Lambda0,5} \le 3 \text{ her}$ $0,5 \text{ so }$	04 07 09 09 Ser,sp				
Temperature range -4 We,uer C30/37 [-] We,uer C40/50 [-] We,uer C50/60 [-] Splitting failure Ser,sp [mm] Resistance for shear Steel failure withou VRk,s [kN]	$for \ h = h_{min}$ $if \ h_{min} \leq h < 2 \ h_{ef}$ $if \ h \geq 2 \ h_{ef}$ $eload$ $elever \ arm^{(1)}$	$S_{cr,sp} = 4 \text{ h}_{ef}$ $S_{cr,sp} = \text{interpolated}$ $S_{cr,sp} = S_{cr,Np} = 20 \text{ d}$ $\textbf{M8}$	value $(\tau_{Rk,ucr}/7,5)^{\Lambda0,5} \le 3 \text{ her}$ $0,5 \text{ so }$	04 07 09 09 M12	M16			
Temperature range -4 We,uer C30/37 [-] We,uer C40/50 [-] We,uer C50/60 [-] Splitting failure Ser,sp [mm] Resistance for shear Steel failure withou VRk,s [kN] Steel failure with level failure wit	$for \ h = h_{min}$ $if \ h_{min} \leq h < 2 \ h_{ef}$ $if \ h \geq 2 \ h_{ef}$ $eload$ $elever \ arm^{(1)}$	$S_{cr,sp} = 4 \text{ hef}$ $S_{cr,sp} = \text{interpolated}$ $S_{cr,sp} = S_{cr,Np} = 20 \text{ d}$ $M8$ $Characteristic resi$	value $(\tau_{Rk,ucr}/7,5)^{\Lambda0,5} \leq 3 \text{ her}$ $0,5.5$ M10 stance according to the	04 07 09 Ser,sp M12 e design method spe	M16 ecified in Annex B			
Temperature range -4 We,uer C30/37 [-] We,uer C40/50 [-] We,uer C50/60 [-] Splitting failure Ser,sp [mm] Cer,sp [mm] Resistance for shear Steel failure withou VRk,s [kN] Steel failure with lem MORk,s [kN]	$for \ h = h_{min}$ $if \ h_{min} \leq h < 2 \ h_{ef}$ $if \ h \geq 2 \ h_{ef}$ $eload$ $elever \ arm^{-1}$	$S_{cr,sp} = 4 \text{ hef}$ $S_{cr,sp} = \text{interpolated}$ $S_{cr,sp} = S_{cr,Np} = 20 \text{ d}$ $M8$ $Characteristic resi$	1,1 $1,1$	04 07 09 Ser,sp M12 e design method spe	M16 ecified in Annex B			
Temperature range -4 Ψc,ucr C30/37 [-] Ψc,ucr C40/50 [-] Ψc,ucr C50/60 [-] Splitting failure Scr,sp [mm] Ccr,sp [mm] Resistance for shear Steel failure withou VRk,s [kN] Steel failure with let M ⁰ Rk,s [kN] Concrete pry-out fa	$for \ h = h_{min}$ $if \ h_{min} \leq h < 2 \ h_{ef}$ $if \ h \geq 2 \ h_{ef}$ $eload$ $elever \ arm^{-1}$	$S_{cr,sp} = 4 \text{ hef}$ $S_{cr,sp} = \text{interpolated}$ $S_{cr,sp} = S_{cr,Np} = 20 \text{ d}$ $M8$ $Characteristic resi$	value $(\tau_{Rk,ucr}/7,5)^{\Lambda0,5} \leq 3 \text{ her}$ $0,5 \text{ M10}$ Stance according to the stance according to the	O4 O7 O9 Scr.sp M12 e design method spreedesign m	M16 ecified in Annex B			
Temperature range -4 Ψ _{c,ucr} C30/37 [-] Ψ _{c,ucr} C40/50 [-] Ψ _{c,ucr} C50/60 [-] Splitting failure S _{cr,sp} [mm]	$for \ h = h_{min}$ $if \ h_{min} \leq h < 2 \ h_{ef}$ $if \ h \geq 2 \ h_{ef}$ $load$ $t \ lever \ arm^{(1)}$	$S_{cr,sp} = 4 \text{ hef}$ $S_{cr,sp} = \text{interpolated}$ $S_{cr,sp} = S_{cr,Np} = 20 \text{ d}$ $M8$ $Characteristic resi$	value $(\tau_{Rk,ucr}/7,5)^{\Lambda0,5} \leq 3 \text{ her}$ $0,5.5$ M10 stance according to the	O4 O7 O9 Scr.sp M12 e design method spreedesign m	M16 ecified in Annex B			

¹⁾Note: Steel property class according to Annex A3 Table A3.

CA VINYL - EKOR	Annex C1 of European
Performance for static and quasi-static loads: Resistances for threaded rod	Technical Assessment ETA-19/0817

Table C2: Characteristic values for tension and shear load in non cracked concrete for rebar

ESSENTIAL CHARACTERISTICS PERFORMANCE							
Installation parame	eters	Ø8	Ø10	Ø12	Ø14	Ø16	
d [mm]		8	10	12	14	16	
d ₀ [mm]		12	14	16	18	20	
h ₁ [mm]		h _{ef} + 5 mm					
n _{min} [mm]		$h_{ef} + 30 \text{ mm}; \ge 100 \text{ mm}$ $h_{ef} + 2d_0$					
t _{fix} [mm]	Min			> 0			
tfix [IIIIII]	Max			≤ 1500 mm			
S _{min} [mm]		40	40	40	40	50	
C _{min} [mm]		40	40	40	40	50	
$\gamma_2 = \gamma_{inst}$ [-] Category	1 – for tensile load			1,20			
$\gamma_2 = \gamma_{inst}$ [-] Category	1 – for shear load			1,00			
Characteristic resis	tance for tension load	Ø8	Ø10	Ø12	Ø14	Ø16	
Steel failure ¹⁾		_					
N _{Rk,s} [kN]		Characteristic	resistance accor	rding to the design	method specifie	d in Annex 1	
Concrete cone failu	re	•					
N _{Rk,c} [kN]		Characteristic	resistance accor	rding to the design	method specifie	d in Annex I	
•	and concrete cone failure	T.					
$\tau_{Rk,ucr}$ [N/mm ²] concrete C20/25 Temperature range -40°C/+40°C (T _{mlp} = +24°C)		12	11	10	10	9	
τ _{Rk,ucr} [N/mm ²] concr Temperature range	rete C20/25 40°C/+50°C (T _{mlp} = +40°C)	12	10	10	9,5	8,5	
		1.04					
ψ _{c,ucr} C30/37 [-]		71					
				1,04			
ψ _{c,ucr} C40/50 [-]				,-			
ψ _{c,ucr} C40/50 [-] ψ _{c,ucr} C50/60 [-]				1,07			
ψ _{c,ucr} C40/50 [-] ψ _{c,ucr} C50/60 [-]	for $h = h_{min}$	$S_{cr,sp} = 4 \ h_{ef}$		1,07			
ψ _{c,ucr} C40/50 [-] ψ _{c,ucr} C50/60 [-] Splitting failure	$for \ h = h_{min}$ $if \ h_{min} \leq h < 2 \ h_{ef}$	$S_{cr,sp} = 4 \ h_{ef}$ $S_{cr,sp} = interpol$	ated value	1,07			
ψ _{c,ucr} C30/37 [-] ψ _{c,ucr} C40/50 [-] ψ _{c,ucr} C50/60 [-] Splitting failure S _{cr,sp} [mm]		$S_{cr,sp} = interpol$	ated value 20 d (τ _{Rk,ucr} /7,5)	1,07 1,09 $^{0.5} \le 3 \text{ hef}$			
ψ _{c,ucr} C40/50 [-] ψ _{c,ucr} C50/60 [-] Splitting failure S _{cr,sp} [mm]	$if \ h_{min} \leq h < 2 \ h_{ef}$	$S_{cr,sp} = interpol$		1,07 1,09			
ψ _{c,ucr} C40/50 [-] ψ _{c,ucr} C50/60 [-] Splitting failure S _{cr,sp} [mm]	$\begin{array}{c} \text{if } h_{min} \leq h < 2 \ h_{ef} \\ \\ \text{if } h \geq 2 \ h_{ef} \end{array}$	$S_{cr,sp} = interpol$		1,07 1,09 $^{0.5} \le 3 \text{ hef}$	Ø14	Ø16	
Ψ _{c,ucr} C40/50 [-] Ψ _{c,ucr} C50/60 [-] Splitting failure S _{cr,sp} [mm] C _{cr,sp} [mm] Resistance for shear	$\begin{array}{c} \text{if } h_{min} \leq h < 2 \ h_{ef} \\ \\ \text{if } h \geq 2 \ h_{ef} \end{array}$	$S_{cr,sp} = interpol$ $S_{cr,sp} = S_{cr,Np} = 2$	20 d (τ _{Rk,ucr} /7,5) ⁴	1,07 1,09 1,09 $^{0.5} \le 3 \text{ hef}$ 0,5 Scr,sp	Ø14	Ø16	
Ψc,ucr C40/50 [-] Ψc,ucr C50/60 [-] Splitting failure Scr,sp [mm] Ccr,sp [mm] Resistance for shear Steel failure withou VRk,s [kN]	$if \ h_{min} \leq h < 2 \ h_{ef}$ $if \ h \geq 2 \ h_{ef}$ $r \ load$ $t \ lever \ arm^{-1)}$	$S_{cr,sp} = interpol$ $S_{cr,sp} = S_{cr,Np} = 2$ Ø8	20 d (τ _{Rk,ucr} /7,5) ⁴ Ø10	1,07 1,09 1,09 $^{0.5} \le 3 \text{ hef}$ 0,5 Scr,sp	-	,	
Wc,ucr C40/50 [-] Wc,ucr C50/60 [-] Splitting failure Scr,sp [mm] Ccr,sp [mm] Resistance for shear Steel failure withou VRk,s [kN] Steel failure with le	$if \ h_{min} \leq h < 2 \ h_{ef}$ $if \ h \geq 2 \ h_{ef}$ $r \ load$ $t \ lever \ arm^{-1)}$	$S_{cr,sp} = interpol$ $S_{cr,sp} = S_{cr,Np} = 2$ Ø8	20 d (τ _{Rk,ucr} /7,5) ⁴ Ø10	$1,07$ $1,09$ $1,09$ $0,5 \le 3 \text{ hef}$ $0,5 \text{ S}_{cr,sp}$ Ø12	-	,	
Ψc,ucr C40/50 [-] Ψc,ucr C50/60 [-] Splitting failure Scr,sp [mm] Ccr,sp [mm] Resistance for shead Steel failure withou VRk,s [kN] Steel failure with le M ⁰ Rk,s [kN]	$if \ h_{min} \leq h < 2 \ h_{ef}$ $if \ h \geq 2 \ h_{ef}$ $r \ load$ $t \ lever \ arm^{(1)}$ $ver \ arm^{(1)}$	$S_{cr,sp} = interpol$ $S_{cr,sp} = S_{cr,Np} = 2$ Ø8 Characteristic	20 d (τ _{Rk,ucr} /7,5) ⁴ Ø10 resistance accor	$1,07$ $1,09$ $1,09$ $0,5 \le 3 \text{ hef}$ $0,5 \text{ S}_{cr,sp}$ Ø12	method specifie	d in Annex I	
Y _{c,ucr} C40/50 [-] γ _{c,ucr} C50/60 [-] Splitting failure S _{cr,sp} [mm] C _{cr,sp} [mm] Resistance for shear Steel failure withou V _{Rk,s} [kN] Steel failure with le M ⁰ _{Rk,s} [kN]	$if \ h_{min} \leq h < 2 \ h_{ef}$ $if \ h \geq 2 \ h_{ef}$ $r \ load$ $t \ lever \ arm^{(1)}$ $ver \ arm^{(1)}$	$S_{cr,sp} = interpol$ $S_{cr,sp} = S_{cr,Np} = 2$ Ø8 Characteristic	20 d (τ _{Rk,ucr} /7,5) ⁴ Ø10 resistance accor	$ \begin{array}{c} 1,07 \\ 1,09 \end{array} $ $ \begin{array}{c} 1,07 \\ 1,09 \end{array} $ $ \begin{array}{c} 0,5 \text{ Scr,sp} \\ \hline \text{Ø12} \end{array} $ Trding to the design	method specifie	d in Annex I	
$\begin{array}{l} \psi_{c,ucr} \ C40/50 \ [-] \\ \psi_{c,ucr} \ C50/60 \ [-] \\ \textbf{Splitting failure} \\ \\ S_{cr,sp} \ [mm] \\ \\ \textbf{Resistance for shear} \\ \textbf{Steel failure withou} \\ V_{Rk,s} \ [kN] \\ \textbf{Steel failure with le} \\ M^0_{Rk,s} \ [kN] \\ \textbf{Concrete pry-out failure} \\ k = k_3[-] \\ \end{array}$	$if \ h_{min} \le h < 2 \ h_{ef}$ $if \ h \ge 2 \ h_{ef}$ $r \ load$ $t \ lever \ arm^{-1}$ $ver \ arm^{-1}$	$S_{cr,sp} = interpol$ $S_{cr,sp} = S_{cr,Np} = 2$ Ø8 Characteristic	20 d (τ _{Rk,ucr} /7,5) ⁴ Ø10 resistance accor	$ \begin{array}{c} 1,07 \\ 1,09 \end{array} $ $ \begin{array}{c} 1,07 \\ 1,09 \end{array} $ $ \begin{array}{c} 0,5 \text{ Scr,sp} \\ \hline \text{Ø12} \end{array} $ Trding to the design	method specifie	d in Annex I	
ψ _{c,ucr} C40/50 [-] ψ _{c,ucr} C50/60 [-] Splitting failure	$if \ h_{min} \le h < 2 \ h_{ef}$ $if \ h \ge 2 \ h_{ef}$ $r \ load$ $t \ lever \ arm^{-1}$ $ver \ arm^{-1}$	$S_{cr,sp} = interpol$ $S_{cr,sp} = S_{cr,Np} = 2$ Ø8 Characteristic	20 d (τ _{Rk,ucr} /7,5) ⁴ Ø10 resistance accor	$1,07$ $1,09$ $1,09$ $0,5 \le 3 \text{ hef}$ $0,5 \text{ Scr,sp}$ $0,5 \text{ Modified to the design}$ $0,5 \text{ Scr,sp}$	method specifie	d in Annex I	

 $^{1)}$ Note: Steel property class according to Annex A4 Table A2.

CA VINYL - EKOR	Annex C2 of European
Performance for static and quasi-static loads: Resistances for rebar	Technical Assessment ETA-19/0817

Table C3: Displacements under service loads (static and quasi static) in non cracked concrete

ESSENTIAL CHARACTERISTICS	PERFORMAN	NCE						
Displacement under service load Tensile load	M8	M10		M12	M16			
F _{unc} [kN] for concrete from C20/25 to C50/60	9,5	13,8		16,9	23,6			
$\delta_{\rm N0,unc}$ [mm]	0,30	0,30		0,35	0,35			
$\delta_{N\infty,unc}$ [mm]			0,73	·				
Displacement under service load Shear load	M8	M10		M12	M16			
F _{unc} [kN] for concrete from C20/25 to C50/60	10,5	16,6	_	24,1	44,8			
δ _{V0,unc} [mm]	2,00	2,00		2,00	2,00			
δ v∞,unc [mm]			3,00		7 7 7			
HARMONIZED TECHNICAL SPECIFICATE ESSENTIAL CHARACTERISTICS	PERFORMAN							
	T		Ø12	Ø14	Ø16			
ESSENTIAL CHARACTERISTICS Displacement under service load	PERFORMAN	NCE	Ø12 12,6	Ø14 12,6	Ø16 18,3			
ESSENTIAL CHARACTERISTICS Displacement under service load Tensile load	PERFORMAN Ø8	NCE Ø10	~	~	~			
ESSENTIAL CHARACTERISTICS Displacement under service load Tensile load Func [kN] for concrete from C20/25 to C50/60	PERFORMAN Ø8 7,7	Ø10 10,0	12,6	12,6	18,3			
ESSENTIAL CHARACTERISTICS Displacement under service load Tensile load Func [kN] for concrete from C20/25 to C50/60 δN0,unc [mm]	PERFORMAN Ø8 7,7	Ø10 10,0	12,6 0,40	12,6	18,3			
ESSENTIAL CHARACTERISTICS Displacement under service load Tensile load F_{unc} [kN] for concrete from C20/25 to C50/60 $\delta_{N0,unc}$ [mm] $\delta_{N\infty,unc}$ [mm] Displacement under service load	PERFORMAN Ø8 7,7 0,35	Ø10 10,0 0,35	12,6 0,40 0,73	12,6	18,3			
ESSENTIAL CHARACTERISTICS Displacement under service load Tensile load F_{unc} [kN] for concrete from C20/25 to C50/60 $\delta_{N0,unc}$ [mm] $\delta_{N\infty,unc}$ [mm] Displacement under service load Shear load	### PERFORMAN ### 0,35 ### 0,35	010 10,0 0,35 010	12,6 0,40 0,73 Ø12	12,6 0,40 Ø14	18,3 0,40 Ø16			

Note: Design method according to Annex B1.

CA VINYL - EKOR	Annex C3 of European
Performance for static, quasi-static loads: Displacements	Technical Assessment ETA-19/0817

Table C4: Resistance to fire

HARMONIZED TECHNICAL SPECIFICATION: EAD 330499-00-0601 TECHNICAL REPORT TR020	
ESSENTIAL CHARACTERISTICS	PERFORMANCE
Resistance to fire	NPA

Table C5: Reaction to fire

HARMONIZED TECHNICAL SPECIFICATION: EAD 330499-01-0601	
ESSENTIAL CHARACTERISTICS	PERFORMANCE
Reaction to fire	In the final application the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not make any contribution to fire growth or to the fully developed fire and they have no influence to the smoke hazard.

CA VINYL - EKOR	Annex C4 of European
Performance for exposure to fire	Technical Assessment ETA-19/0817